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Temporal Forcing of Wave Patterns

D. Walgraef®

The effect of temporal modulations on wave patterns induced by spatiotemporal
Hopf bifurcations is discussed in the framework of amplitude equations of the
Ginzburg-Landau type. The approach is well adapted to the study of pattern
formation in liquid crystals which, on the other hand, provide a class of easily
forced systems. A few examples, related to experimental realizations, are
presented. In particular, it is shown how pure temporal modulations may
stabilize standing waves or two-dimensional wave patterns in regimes where
they are otherwise unstable. The properties of the defects which are associated
to these structures are also discussed.

KEY WORDS: Spatiotemporal patterns; external forcing; strong resonances;
waves; Hopf bifurcation.

1. INTRODUCTION

The study of the effect of external modulations on pattern-forming
instabilities has recently triggered an increasing interest. For example,
in the Lowe-Gollub experiment,'") a spatial modulation of the
electrohydrodynamic instability of nematics induces discommensurations
and a transition toward structures with incommensurate wavelengthes. The
theoretical aspects of this problem have been discussed in the framework of
amplitude equations and phase dynamics.*?) In the case of Rayleigh—
Bénard convection, an imposed flow field leads to a spatial variation of the
wavelength of the patterns, while in chemically active media, such a flow
is able to disorganize spiral waves and leads to spatiotemporal disorder.®
It has also been shown that these effects may be interpreted within the
phase dynamical analysis of the structures.®” Furthermore, Brand‘®
recently showed how flow fields can affect the phase dynamics and
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proposed minimal model equations able to describe qualitatively several
experimental observations. In two-dimensional systems, the selection and
stability of a steady pattern may also be strongly affected by externally
imposed modulations as discussed by Pismen.®’ Temporal modulations of
steady spatial patterns usually lead to a mere shift of the bifurcation.
However, in Rayleigh-Bénard convection, a temporal modulation of the
temperature field imposed at the bottom of the fluid layer breaks the
vertical symmetry around the midlayer plane and may induce the forma-
tion of hexagonal structures.®’

In the case of spatiotemporal Hopf bifurcations, original effects occur
as a result of the nonvariational character of the dynamics. In particular,
unstable standing waves or two-dimensional wave patterns may be
stabilized by pure spatial or temporal modulations of suitable wavelengths
or frequencies''®** and I will discuss here some examples of the influence
of such temporal forcings on the selection and stability of wave patterns
and also on the properties of wave defects.

2. TEMPORAL FORCING OF 1D TRAVELING WAVES

As shown recently, pure temporal modulations imposed on Hopf
bifurcations leading to wave patterns modify the selection and stability
properties of these spatiotemporal structures.’®'?) For example, it was
shown that, in one-dimensional systems, beyond spatiotemporal Hopf
bifurcations, left and right traveling waves are linearly coupled by uniform
oscillations or stady spatial modulations provided the frequency of the
oscillations or the wavenumber of the modulations are close to two times
the critical ones. Hence, a spatially uniform forcing may restore the left—
right symmetry and transform traveling waves into standing waves in
regimes where they are otherwise unstable.

Close to a bifurcation, this effect may be discussed in the framework
of amplitude equations. Let us consider an isotropic system, invariant
under space and time translations and parity transformations, which
undergoes a Hopf bifurcation with finite wavenumber ¢, and frequency w,.
The growth rate of the unstable modes is written as

w(q)=e—E3(g" — g2 +ilo +0i(q” — ¢)) + wi(g’ — q2)*]
+0((¢° — q2)°) (1
On writing the order parameter-like variable as
a(x, y, t}y=Re[A(x, y, t) exp(qr — w_ 1)
+ B(x, y, )expilgr+w.n)], |4l =4, (2)
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the slowly-varying envelopes of right and left traveling waves propagating
in, say, the x direction satisfy, after appropriate scaling, the following
amplitude equations!'4'%):

{72

. V2\2
A+ V A=ed+(1+in) <Vx—l——l> A+in(VitV)A—(1+ip)AlA|?

2q.
—(y+id)4|B|? 3)
. le a4
B—cV . B=¢B+ (1 —ix) (Vx+§-‘fn B—in(Vi-&»xVi)B—(l —iB)B|B|?
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When y>1, only traveling waves are stable, whiled for y <1 standing
waves arc the only stable structures. I will consider in the following the
case y > 1. This description is valid, for example, for convection in binary
fluids. Traveling waves have also been observed in liquid crystal
instabilities such as the electrohydrodynamic instability of nematics.”’ In
this case, one has to take into account the intrinsic anisotropy of the
system in the derivation of the corresponding amplitude equations from the
underlying nematohydrodynamics. For the transitions to normal or
oblique rolls, this has been done by Bodenschatz et al.'® However, since
such a derivation is not available yet for the transition to traveling waves,
one has to rely on symmetry arguments and write the real part of the
growth rate of the unstable modes as

Re o(q)=¢—¢3(¢° —92)° — pg; — 214395 — 4}

where Ox is the easy axis determined by the anisotropy. Hence, the first
instability occurs toward waves of wavenumber ¢, traveling in the x
direction, while the threshold for waves of wavenumber ¢ and traveling in
an arbitrary direction making an angle ¢ with the easy axis is given by

e(¢) = £3(a° — q2)* — pg® sin’$ — ¢*(2n sin’p cos’¢ + v sing)
In this case, the amplitude equations for the critical waves
A(x, y, t)expi(q.x —w t) and B(x, y, t)exp i(g.x + w.t)] become
A+cV A=ed+(1+ia)(V2+pV2) A~ (1 —if) 4|42
—(y+id)A|B|?

B—cV,B=¢eB+ (1 —ia)(Vi+pV2)B—(1—if)B|B|?
—(y—id)B|A|*
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If one applies to this system a pure temporal forcing described by a
field of the type s cos 2(w,+v)t, a strong resonance occurs between left
and right traveling waves, and the amplitude equations become

A—=cV A=(E+m)A+(1+)(Vi+pV2)A—(1+if)A|A]?
—(y+i0)A|B|*+ uB

B—cV .B=(e—iv)B+(1—ia)(VZ+pV2)B—(1—iB)B|B|?
—(y—i8)B|A|*+ uA

where u oc h. As shown in refs. 10 and 11, on varying the parameters ¢, v,
and u, besides limit cycles and homoclinic orbits corresponding to
modulated traveling waves, these equations may admit nontrivial fixed
points (cf. Fig. 1). For y=2 and 0 =24, they are defined by

A=Rexpip,, B=Rexpipy

— 2
ba—ds=cst, Pyt gp=sin” (X_Zﬁﬁ_> (6)
Rzzi(l—iﬁ'f) {e+vB £ [(e+vB)Y — (14 f)(e* +v7 — )]}
™
Be—-v=+ 1+BZ)U2 138'\/=-(1~*rBz)1/z

Fig. 1. Phase diagram for a Hopf bifurcation forced by temporal modulations of {frequency
close to twice the critical frequency, in the &, v plane. The two stable fixed points corre-
sponding to standing waves are located in the hatched domain.
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Only two of them are stable, as discussed in refs. 10 and 11, and the
associated standing waves have been observed and analyzed in the
electrohydrodynamic instability of nematics by Rehberg et al.!'?

The linear part of the phase dynamics associated with these forced
patterns may then be written as follows [A=Rexpi(®+y), B=
Rexp i(d— ), 6 =Rcos(gx + @) cos(w. t+¢)]:

0pp= -V D+D NV +DVh+v—(B+6)R*— psin 2y

7
6,6= -V y+D NV, 0+D VD o)
Hence the standing waves correspond to the locking of the phase v and are
expected to present excitability features. The different behavior of the
phases ¥ and @ leads to different types of defects for the forced standing
waves. Recall that, in the case of unforced standing waves (i.e., when
—1<y<1), the manifold of stable homogeneous states of Eq.(3)
corresponds to a two-torus parametrized by the phases ¢y and @, or ¢, and
¢g, and the topological defects are characterized by two topological
charges (n,,n,) corresponding to the extra wavelengths added to the
underlying right and left traveling waves.""”) The elementary defects which
correspond to right (1, 0) or left (1,0) dislocations have been obtained
numerically*® and experimentally.?® In the case of forced standing waves
discussed here, the manifold of stable homogeneous states is transformed
into two circles parametrized by the phase @, since the other phase variable
¥ is locked. Hence, the corresponding topological defects are (#, n) disloca-
tions, and the most probable of them, the (1, 1) dislocation, has been
observed experimentally. !

However, as a consequence of the excitability of the ¢ dynamics,
defects associated with phase unlocking may also exist. For example, point
defects corresponding to vertex singularities should lead to the formation of
spiral waves similar to the ones observed by Lega in her analysis of defects
in wave patterns.”? On the other hand, since  may be locked in two
different values, ¥, and ¥, + n, domains where the order parameter takes
the value Rcos(qx+ @)cos(w, t+y,) or —Rcos(gx+P)cos(w, t+ )
may coexist within the system. According to the instensity of the forcing,
as discussed by Coullet er al,® the domain walls which separate these
regions may be of two types:

1. Walls where the amplitude vanishes when going from R to — R as
in the Ising walls of magnetic systems.

2. Walls where the amplitude remains finite, but where the phase
makes a+ 7 or a —x rotation as in the Bloch walls of magnetic systems.
Hence, these walls are of positive or negative chirality and, as a conse-
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quence of the nonvariational character of the dynamics, they move with a
velocity proportional to their chirality. Furthermore, Néel points, ie.,
points where the chirality changes its sign, may exist in such walls, and
since the wall velocity also changes its sign at these points, they should
accordingly induce the formution of spirals within the standing wave
pattern. )

3. TEMPORAL FORCING OF 2D WAVE PATTERNS

In two-dimensional systems, new possibilities occur and I will discuss
here an illustrate example. Consider the case of isotropic systems described
by Eq. (3) with y> 1, where waves traveling in one direction are the only
stable structure.

The effect of a purely spatial forcing of hexagonal symmetry on such
patterns has been analyzed in ref 13. It was shown that, when the
wavenumber of the forcing is close to 3g., traveling waves with wave-
vectors parallel to the basic vectors of the imposed hexagonal modulation
are nonlinearly coupled. This leads to a stabilization mechanism for two-
dimensional wave patterns.

Similar effects may also be obtained with purely temporal forcings.
For example, temporal modulations of frequency w, such that nw, ~ 3w.
couple triplets of waves traveling in directions making 27/3 angles
[e.g, A expi(lqr—w.1), A,expi(g,r—w.t), A;expi(gsr—w.t), with
q;+9,+95=0 and |q,|=|q:| =19,/ =¢.)- The corresponding uniform
amplitude equations are

Ai=(e+i)A; +vA, 45— (1—if) 4, 14,17 — (k + iA) A, (| 44> + |45]%)
Ay=(e+iv) Ay +vA, Ay — (1 +iB) Ay | A, — (k +iA) Ax(1 4,12 + 14511 (8)
/ia‘—‘ (e+iv)Ay+vd, A, —(1+ i.B)A3|A312_ (k+iA)A5(JA 17+ 145]%)

where v oc A", h being the amplitude of the external modulation, and
v=nwy/3 —w,, the frequency detuning between the external field and the
waves.
Hence, from the fixed-point condition (4, = Rexp i®,, 4, = R exp i®D,,
A;=Rexpid;):
[(14+2K)* 4+ (B4+24)°TR* — [2e(1 + 2k) + 2v(B+24) + * T R* + (* +v*) =0
9)

it may be deduced that hexagonal wave patterns exist when

v+ 40 [e(1 +2) + (B +24) ] — 4[v(1 + 2x) — s(B + 22)]? >0 (10)
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and are the selected structures when traveling waves are unstable, i.e., when
ve—(v—ie)’—(k—1)%>>0 (11)

The corresponding phase diagram is presented in Fig. 2 for zero and
nonzero frequency detuning v, showing the regions where 2D and 1D wave
structures are individually or simultaneously stable. One sees that, either
on increasing ¢ at fixed field intensity, or on increasing the field intensity
at fixed ¢, one crosses a region where the only stable structure corresponds
to hexagonal wave patterns.

Hence we have here another example where the stabilization of a
pattern by an external field of a different symmetry is made possible by the
nonvariational character of the dynamics. As for the 2w forcing discussed

2D Waves 5
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curve 2 stability limit of 1D traveling wave
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Fig. 2. Phase diagram for a Hopf bifurcation forced by temporal modulations of frequency
close to three times the critical frequency, at zero and nonzero detuning.
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above, this phenomenon should be experimentally observable in binary
fluid convection or in the electrohydrodynamic instability of nematics. In
the latter case, however, specific effects related to the intrinsic anisotropy
of the system should occur.

Effectively, as discussed above, we write the uniform amplitude
equations for traveling waves of wavevector q making an angle ¢ with the
easy axis Ox as

A=[e— &>~ q>)*—p(q, $)1A— (L +ip)A|A]> — (y +i0) A |B|?

. (12)
B=[e—&3(q°~q2)* —plg. $)1B— (1 —iB) B|BI> — (y —id) B|A|?

where
p(q, $) = pq” sin’p + g*(2n sin’¢ cos’¢ + 7 sin*¢)

and the selected structure still corresponds to traveling waves with
wavevectors |q| = g, parallel to the easy axis. Of course, these equations are
only valid in the weak anisotropy limit, ie., when the anisotropy
coefficients p, n, and 7 scale as . Nevertheless, as in other systems, one may
expect that this description remains valid when these coefficients and ¢ are
of order one.

The application of a temporal modulation of frequency close to 3w,
still induces strong resonances between these waves of amplitude 4, and
waves traveling in directions making 27/3 angles with the easy axis and of
amplitude 4, and 4,. On assuming for simplicity that the frequency is not
affected by the anisotropy, the corresponding uniform amplitude equations
are

A= (e+ i) A, +vd,A;— (1 +if) A A\ — (k + i) A (14517 + 1 4,]%)
Ay=(e—p+iv)Ar+0vA, A5 — (1 +iB) Ay | 45> — (k +id) A5(|4,1* + |45]%)
Ay=(e—p+iv)A;+0vd, A, — (1 + i) A3\ A5 — (e +ik) A3 (141> + 1 4,]%)
(13)

As a result, travelling waves in the x direction are unstable when

e_<e<e,
with [p=p(q., 2n/3)]
g, = (02-2v-2p(k-1) £ {v*-v°[4Av+ 6p(k—1)]-4[v(k—1)-pA]1* } /)

x {2[A%+ (k—1)*]} ! (14)
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Hence, in this regime, 2D wave patterns are expected, which correspond to
the fixed points of Eq. (13). However, since the relative phases of the
underlying modes obey the equation

a,(¢1~¢2):a,(¢1—¢3)=9=(R%~R%)(i—ﬂ—%)sm(z ¢,-) (15)

even in the presence of a stable fixed point for the amplitudes R, and the
global phase ¥=3?_, ¢,, the relative phases are time-dependent, and the
resulting pattern

2 4 (0 — Q)1+ o] cos <————‘ 34, y)>’

R, cos(g.x —wt+ ¢y) + 2R, cos[ 5 5

will in general be nonperiodic. In fact, as shown in Fig. 3, it can be viewed
as an alternating sequence, periodic in the y direction, of left and right
traveling waves.

Defects may play an important role in this case also. A typical
example of codimension-1 defect is related to the invariance of the problem
with respect to the 4, - 4,, A, > —A4,, A; > —A, symmetry. Effectively,
domains of wave patterns which are out of phase by a factor =z in the direc-
tion orthogonal to the easy axis may coexist in the system. As illustrated
in Fig. 4, the domain wall separating two such regions corresponds to wave
traveling in the x direction with a wavenumber ¢, abd a frequency w,. The
width of the defect core is of the order of the correlation length of the
amplitude of the modes 2 and 3. As in other systems where transitions
occur between patterns of different symmetries, such defects may be
expected to trigger the transition from two-dimensional to one-dimensional
wave patterns through the growth of the defect core.®”

4. CONCLUSION

External spatial or temporal modulations may be strongly coupled
with the unstable modes associated with pattern-forming instabilities.
These resonances may modify the character of the bifurcation and modify
the selection and stability properties of the resulting patterns. These effects
were discussed in the framework of amplitude equations of the Ginzburg—
Landau type. In particular, in the case of the nonvariational dynamics
associated with spatiotemporal Hopf bifurcations, it was shown how pure
temporal modulations may stabilize standing waves or two-dimensional
wave patterns in regimes where they are otherwise unstable. These
phenomena should be experimentally observable in binary fluid convection

822/64/5-6-6
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Fig. 3. Time evolution of the spatial reconstruction of the wave pattern defined by Eq. (16)
(e=1,v=1, =1, k=A=2, a=0925 v=282; the time separation between two figures is
2n/10w, and they are presented in successive order in each column, the left one corresponding
to the first half period and the right one the second half period).
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domain 1

defect core

domain 2

(1 phase
shift)

6. -4. -2. 0. 2. 4. 6.

Fig. 4. Codimension-one defect separating two domains of forced wave pattern with a phase
shift of z in the y direction.

or in liquid crystal instabilities such as the electrohydrodynamic instability
of nematics. In the liquid crystal case, however, one has to take into
account the intrinsic anisotropy of the system. For example, in the case,
temporal modulations of frequencies close to three times the critical
frequency should be able to induce 2D wave patterns of triangular
symmetry but nonperiodic in time.
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