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Temporal Forcing of Wave Patterns 

D. Walgraef  1 

The effect of temporal modulations on wave patterns induced by spatiotemporal 
Hopf bifurcations is discussed in the framework of amplitude equations of the 
Ginzbur~Landau type. The approach is well adapted to the study of pattern 
formation in liquid crystals which, on the other hand, provide a class of easily 
forced systems. A few examples, related to experimental realizations, are 
presented. In particular, it is shown how pure temporal modulations may 
stabilize standing waves or two-dimensional wave patterns in regimes where 
they are otherwise unstable. The properties of the defects which are associated 
to these structures are also discussed. 

KEY WORDS: Spatiotemporal patterns; external forcing; strong resonances; 
waves; Hopf bifurcation. 

1. I N T R O D U C T I O N  

The s tudy of the effect of external  modu la t ions  on pa t t e rn - fo rming  
instabi l i t ies  has recently t r iggered an increasing interest.  F o r  example,  
in the L o w e - G o l l u b  experiment,~l) a spat ia l  m o d u l a t i o n  of the 
e l e c t r o h y d r o d y n a m i c  ins tabi l i ty  of nemat ics  induces d i scommensura t ions  
and  a t rans i t ion  t oward  s tructures  with incommensura t e  wavelengthes.  The 
theore t ica l  aspects  of this p rob lem have been discussed in the f ramework  of 
ampl i tude  equat ions  and  phase  dynamics/2 '3)  In  the case of Rayleigh 
B6nard convect ion,  an imposed  flow field leads to a spat ia l  var ia t ion  of the 
wavelength  of the pat terns ,  ~4) while in chemical ly  active media,  such a flow 
is able to d isorganize  spiral  waves and leads to spa t i o t empora l  disorder .  ~s) 
I t  has also been shown tha t  these effects m a y  be in terpre ted  within the 
phase  dynamica l  analysis  of the structures.  ~6'7) Fu r the rmore ,  Brand  ~61 
recent ly showed how flow fields can affect the phase dynamics  and 
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proposed minimal model equations able to describe qualitatively several 
experimental observations. In two-dimensional systems, the selection and 
stability of a steady pattern may also be strongly affected by externally 
imposed modulations as discussed by Pismen. (~/Temporal modulations of 
steady spatial patterns usually lead to a mere shift of the bifurcation. 
However, in Rayleigh B6nard convection, a temporal modulation of the 
temperature field imposed at the bottom of the fluid layer breaks the 
vertical symmetry around the midlayer plane and may induce the forma- 
tion of hexagonal structures. (9~ 

In the case of spatiotemporal Hopf bifurcations, original effects occur 
as a result of the nonvariational character of the dynamics. In particular, 
unstable standing waves or two-dimensional wave patterns may be 
stabilized by pure spatial or temporal modulations of suitable wavelengths 
or frequencies ~1(~13) and I will discuss here some examples of the influence 
of such temporal forcings on the selection and stability of wave patterns 
and also on the properties of wave defects. 

2. T E M P O R A L  FORCING OF 1D TRAVELING W A V E S  

As shown recently, pure temporal modulations imposed on Hopf 
bifurcations leading to wave patterns modify the selection and stability 
properties of these spatiotemporal structures. (1~ 12~ For example, it was 
shown that, in one-dimensional systems, beyond spatiotemporal Hopf 
bifurcations, left and right traveling waves are linearly coupled by uniform 
oscillations or stady spatial modulations provided the frequency of the 
oscillations or the wavenumber of the modulations are close to two times 
the critical ones. Hence, a spatially uniform forcing may restore the left- 
right symmetry and transform traveling waves into standing waves in 
regimes where they are otherwise unstable. 

Close to a bifurcation, this effect may be discussed in the framework 
of amplitude equations. Let us consider an isotropic system, invariant 
under space and time translations and parity transformations, which 
undergoes a Hopf bifurcation with finite wavenumber qc and frequency oJ~. 
The growth rate of the unstable modes is written as 

w(q) -- e - ~2(q2 _ q~)2 + i [co C + co,(q 2 - q~) + co2(q 2 - q~)2] 

+ O( (q2  _ q~)3) (1.~ 

On writing the order parameter-like variable as 

a(x, y, t) = Re[A(x, y, t) exp(qr - coct ) 

+B(x, y, t) exp i(qr + e)ct)], [q[ =q~ (2) 
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the slowly-varying envelopes of right and left traveling waves propagating 
in, say, the x direction satisfy, after appropriate scaling, the following 
amplitude equations (14 16): 

ft + c V x A  = 8A + (1 + ie) V~ - ~q~/  A + i,l(V2~ + zVZ)A - (1 + i f l )A IA 12 

- (7 + i6 )A  ]B] 2 (3) 

iV 2 3 
....... .~ B _  itI(V2x + Z V 2 ) B _  ( I _ ifl)B]B] 2 B - c V x B = e B + ( 1 - i ~ )  V y + 2 q  c 

- ( y - i 6 ) B l A I  2 

When 7>  1, only traveling waves are stable, whiled for 7 < 1 standing 
waves are the only stable structures. I will consider in the following the 
case 7 > 1. This description is valid, for example, for convection in binary 
fluids. Traveling waves have also been observed in liquid crystal 
instabilities such as the electrohydrodynamic instability of nematicsJ 17) In 
this case, one has to take into account the intrinsic anisotropy of the 
system in the derivation of the corresponding amplitude equations from the 
underlying nematohydrodynamics. For the transitions to normal or 
oblique rolls, this has been done by Bodenschatz et al. ~ls) However, since 
such a derivation is not available yet for the transition to traveling waves, 
one has to rely on symmetry arguments and write the real part of the 
growth rate of the unstable modes as 

R e ~ o ( q ) = e -  2 2 2 2 ~ - o ( q - q c ) - P q ~  2 2 _  - 2 t l q x q y  zq 4 

where 0x is the easy axis dete, rmined by the anisotropy. Hence, the first 
instability occurs toward waves of wavenumber qc traveling in the x 
direction, while the threshold for waves of wavenumber q and traveling in 
an arbitrary direction making an angle ~b with the easy axis is given by 

g(q6) = ~02(q 2 2 2 2 - qc)~ - Pq sinZq ~ - q4(2t/sin2r c~ ~ + r sin4~ b) 

In this case, the amplitude equations for the critical waves 
A ( x, y, t )exp i( q cx - oo c t ) and B( x, y, t )exp i( q cx + co c t ) ] become 

A + cVx A = eA + ( 1 + i~)(V 2 + pV~) A - ( 1 - ifl) A [A [ 2 

- (~ + i 6 ) A  [Bp 2 

(4) 
[ ~ -  c V x B  = eB + (1 - i~)(V~ + p V ~ ) B  - (1 - i f l )B IBI 2 

- ( 7 - i 6 ) B ] A [  2 
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field 
and right traveling waves, and the ampli tude equat ions become 

ft - c V x A  = (8 + iv )A  + (1 + &)(V~ + p V ~ ) A -  (1 + i f i )A [AI 2 

- (7 + i6)A IBI 2 + # B  

- c V x B  = (8 -- i v )B  + (1 - &)(V 2 + p V Z ) B -  (1 - i f i ) B  19[ 2 

-- ( ? - i ~ ) B ] A ]  2 + t~A 

If one applies to this system a pure tempora l  forcing described by a 
of the type h cos 2(co c, + v)t ,  a strong resonance occurs between left 

(5) 

where/~ oc h. As shown in refs. 10 and 11, on varying the parameters  ~, v, 
and /2, besides limit cycles and homoclinic orbits corresponding to 
modula ted  traveling waves, these equat ions may  admit  nontrivial  fixed 
points (cf. Fig. 1). For  7 = 2 and 6 = 2fl, they are defined by 

R 2 _  m 

A = R exp iOA , B = R exp i~B 

q~A --  q~e = cs t ,  OA+Oe=sin-l(V--~ fiR2- ) (6 )  

1 
3(1 ..]_ f i2) {G ~- Y/~-}" [(/3-]- Yf l )2 - -  (1 _1_ fi2)(~2 @ y2__ ]./2)]1/'2} 

TW 

]~E -- V = + ( I+  ~2)1/2' 

2 2 2 
8. + v  = g  

]~E --V = -- (1+ ~2)1/2 

Fig. 1. Phase diagram for a Hopf bifurcation forced by temporal modulations of frequency 
close to twice the critical frequency, in the e, v plane. The two stable fixed points corre- 
sponding to standing waves are located in the hatched domain. 
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Only two of them are stable, as discussed in refs. 10 and 11, and the 
associated standing waves have been observed and analyzed in the 
electrohydrodynamic instability of nematics by Rehberg et al. ~12~ 

The linear part of the phase dynamics associated with these forced 
patterns may then be written as follows [ A = R e x p i ( 4 5 + O ) ,  B =  
R exp i(45 - ~), a = R cos(qx + 45) cos(~, t + 0)]:  

Ottp = -cVx45  + DxVZt)  + DyV~t)  + v - (fl + 6)R 2 - # sin 2 0 
(7) 

D 2 ~,45 = -cVx~, + D~V245 + yVy45 

Hence the standing waves correspond to the locking of the phase ~ and are 
expected to present excitability features. The different behavior of the 
phases ~p and 45 leads to different types of defects for the forced standing 
waves. Recall that, in the case of unforced standing waves (i.e., when 
- 1 < 7 < 1 ) ,  the manifold of stable homogeneous states of Eq.(3) 
corresponds to a two-torus parametrized by the phases ~p and 45, or CA and 
CB, and the topological defects are characterized by two topological 
charges (nl, n2) corresponding to the extra wavelengths added to the 
underlying right and left traveling waves. (19) The elementary defects which 
correspond to right (1, 0) or left (1, 0) dislocations have been obtained 
numerically ~18~ and experimentally. ~2~ In the case of forced standing waves 
discussed here, the manifold of stable homogeneous states is transformed 
into two circles parametrized by the phase 45, since the other phase variable 

is locked. Hence, the corresponding topological defects are (n, n) disloca- 
tions, and the most probable of them, the (1, 1) dislocation, has been 
observed experimentally. (21/ 

However, as a consequence of the excitability of the ~ dynamics, 
defects associated with phase unlocking may also exist. For example, point 
defects corresponding to vertex singularities should lead to the formation of 
spiral waves similar to the ones observed by Lega in her analysis of defects 
in wave patterns. (22) On the other hand, since ~ may be locked in two 
different values, 0o and 0o + ~, domains where the order parameter takes 
the value R cos(qx + 45) cos(e)ct + 00) or - R  cos(qx + 45) cos(e)ct + 00) 
may coexist within the system. According to the instensity of the forcing, 
as discussed by Coullet et al., (23) the domain walls which separate these 
regions may be of two types: 

1. Walls where the amplitude vanishes when going from R to - R  as 
in the Ising walls of magnetic systems. 

2. Walls where the amplitude remains finite, but where the phase 
makes a + z~ or a - ~  rotation as in the Bloch walls of magnetic systems. 
Hence, these walls are of positive or negative chirality and, as a conse- 
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quence of the nonvariational character of the dynamics, they move with a 
velocity proportional to their chirality. Furthermore, N6el points, i.e., 
points where the chirality changes its sign, may exist in such walls, and 
since the wall velocity also changes its sign at these points, they should 
accordingly induce the formution of spirals within the standing wave 
pattern. (24) 

3. T E M P O R A L  FORCING OF 2D W A V E  PATTERNS 

In two-dimensional systems, new possibilities occur and I will discuss 
here an illustrate example. Consider the case of isotropic systems described 
by Eq. (3) with 7 > 1, where waves traveling in one direction are the only 
stable structure. 

The effect of a purely spatial forcing of hexagonal symmetry on such 
patterns has been analyzed in ref. 13. It was shown that, when the 
wavenumber of the forcing is close to 3q,,, traveling waves with wave- 
vectors parallel to the basic vectors of the imposed hexagonal modulation 
are nonlinearly coupled. This leads to a stabilization mechanism for two- 
dimensional wave patterns. 

Similar effects may also be obtained with purely temporal forcings. 
For example, temporal modulations of frequency co o such that no) o -3~o C 
couple triplets of waves traveling in directions making 2n/3 angles 
[e.g., A 1 exp i (q lr -OOct) ,  A 2 exp i ( q z r - - c o c t ) ,  A 3 exp i ( q 3 r - c % t ) ,  with 
ql + q 2 + q 3  = 0  and tqll = [qll = Iql[ =qc)- The corresponding uniform 
amplitude equations are 

~t 1 = (g + iv )A 1 + vA2A 3 - (1 - ifl)A1 JAil a -- (x  + i 2 ) A l ( l A d  2 +/A3] 2) 

A 2 = ( e + i v ) A z + v A 1 A 3 - ( 1  +i f l )A21A2]2- (~c  + i2)A2(]All2 + IA312) (8) 

~t 3 = (e + i v ) A 3  + v A z A l -  (1 + ifl)A3]A3t 2 -  (to + i2)A3(IA1] 2 + ]A2[ 2) 

where v oc h n, h being the amplitude of the external modulation, and 
v = nCOo/3- co c, the frequency detuning between the external field and the 
waves. 

Hence, from the fixed-point condition (Al = R exp i~/'l, A2 = R exp iq52, 
A 3 = R exp i~3): 

[-(1 + 2~c) 2 + (fl+ 22) 2 ] R 4 - [-2g(1 + 2~c) + 2v(fl + 2,~) + v 2 ] R 2 + (e2+ v 2) = 0 

(9) 

it may be deduced that hexagonal wave patterns exist when 

v4+4v2[e(1  +2~c)+v(f i+2)~)] - -4[v(1  + 2 ~ c ) - - e ( f i + 2 2 ) ] 2 > 0  (10) 
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and are the selected structures when traveling waves are unstable, i.e., when 

v2e - (v - ;~e) 2 -  ( x  - 1 )2e2 > 0 (11) 

The corresponding phase diagram is presented in Fig. 2 for zero and 
nonzero frequency detuning v, showing the regions where 2D and 1D wave 
structures are individually or simultaneously stable. One sees that, either 
on increasing e at fixed field intensity, or on increasing the field intensity 
at fixed e, one crosses a region where the only stable structure corresponds 
to hexagonal wave patterns. 

Hence we have here another example where the stabilization of a 
pattern by an external field of a different symmetry is made possible by the 
nonvariational character of the dynamics. As for the 2(o forcing discussed 

V 
4, 

1 3 

-0. 5 J ~ 5  1. i. 5 2. 

I -4. 

K =2 ,  x = 2 p , p = o . 5 , , = 0  

curve i : stability limit of 213 wave pattern 
curve 2 : stability limit of ID traveling wave 

V 

i~ 4 } 2D Waves 

-1. I ~-~l"m 1 . 1 1 1 [ ~  3. 4. 

TW 
1 

E 5. 

Fig. 2. 

~=z, ),=213,!3=o.s,v=o.5 

Phase diagram for a Hopf bifurcation forced by temporal modulations of frequency 
close to three times the critical frequency, at zero and nonzero detuning. 
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above, this phenomenon should be experimentally observable in binary 
fluid convection or in the electrohydrodynamic instability of nematics. In 
the latter case, however, specific effects related to the intrinsic anisotropy 
of the system should occur. 

Effectively, as discussed above, we write the uniform amplitude 
equations for traveling waves of wavevector q making an angle ~b with the 
easy axis 0x as 

]1 = [~ - ~ ( q 2  _ q2)2 _ p(q, ~b)]A - (1 + i f l )A  [A[ 2 - (7 + i&)A [BI 2 

/ ) =  [~ ~o2(q2 _2)2 2 - q~ - P ( q , O ) ] B - ( 1 - i f l ) B I B I 2 - ( 7 - i 6 ) B t A [  
(12) 

where 

p(q,  ~)  = pq2 sinZ~b + q4(2t/sinZ~b cosZ~b + r sin4ql) 

and the selected structure still corresponds to traveling waves with 
wavevectors Iql = qc parallel to the easy axis. Of course, these equations are 
only valid in the weak anisotropy limit, i.e., when the anisotropy 
coefficients p, r/, and r scale as e. Nevertheless, as in other systems, one may 
expect that this description remains valid when these coefficients and e are 
of order one. 

The application of a temporal modulation of frequency close to 3co c 
still induces strong resonances between these waves of amplitude A 1 and 
waves traveling in directions making 2~/3 angles with the easy axis and of 
amplitude A 2 and A 3. On assuming for simplicity that the frequency is not 
affected by the anisotropy, the corresponding uniform amplitude equations 
are 

A 1 = (e + i v ) A 1 +  v A z A 3 - -  (1 + i f l )A  I IAII  2 -  (~c + i2) AI(IA2] 2 + [A312) 

f t  2 = (~ - ~ + i v ) A :  + v A I A 3  - (1 + ifl) A 2 [A2[ 2 - (~c + /2)  Az(]All 2 + LA3[ 2) 

A 3  = (e  - -  fi ~- i v ) A  3 + v A 2 A ~  - (1 + i f i ) A  3 IA312 - (K + i)~) A 3 ( I A  1[ z + ]A2I 2) 
(13) 

As a result, travelling waves in the x direction are unstable when 

with [fi = P(qc,  2~/3)] 

e+ = (v2-22v-2~(tr  1)___ { v 4 - v 2 1 4 2 v + 6 ~ ( ~ - l ) ] - 4 [ v ( t r  1/2) 

x {2[,~2 + (~c- 1)2]} - l  (14) 
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Hence, in this regime, 2D wave patterns are expected, which correspond to 
the fixed points of Eq. (13). However, since the relative phases of the 
underlying modes obey the equation 

- = (R1-R2) 2 - / ? -  sin (15) 
i 

even in the presence of a stable fixed point for the amplitudes Ri and the 
global phase gt= y,~= 1 ~i, the relative phases are time-dependent, and the 
resulting pattern 

R~cos(qcx-cot+Oo)+ 2R2 cos I~-~ c o s  

2(2 
co = co0--~- (16) 

will in general be nonperiodic. In fact, as shown in Fig. 3, it can be viewed 
as an alternating sequence, periodic in the y direction, of left and right 
traveling waves. 

Defects may play an important role in this case also. A typical 
example of codimension-1 defect is related to the invariance of the problem 
with respect to the A1-~ A1, A2-* - A 2 ,  A3--* - A  3 symmetry. Effectively, 
domains of wave patterns which are out of phase by a factor ~ in the direc- 
tion orthogonal to the easy axis may coexist in the system. As illustrated 
in Fig. 4, the domain wall separating two such regions corresponds to wave 
traveling in the x direction with a wavenumber qc abd a frequency co o. The 
width of the defect core is of the order of the correlation length of the 
amplitude of the modes 2 and 3. As in other systems where transitions 
occur between patterns of different symmetries, such defects may be 
expected to trigger the transition from two-dimensional to one-dimensional 
wave patterns through the growth of the defect core. (25) 

4. C O N C L U S I O N  

External spatial or temporal modulations may be strongly coupled 
with the unstable modes associated with pattern-forming instabilities. 
These resonances may modify the character of the bifurcation and modify 
the selection and stability properties of the resulting patterns. These effects 
were discussed in the framework of amplitude equations of the Ginzburg 
Landau type. In particular, in the case of the nonvariational dynamics 
associated with spatiotemporal Hopf bifurcations, it was shown how pure 
temporal modulations may stabilize standing waves or two-dimensional 
wave patterns in regimes where they are otherwise unstable. These 
phenomena should be experimentally observable in binary fluid convection 

822/64/5-6-6 
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-~ -~, -2. Q. 2. 4. 6 

-~.  - 4 .  - g .  O, 2 .  4 6 

Fig. 3. Time evolution of the spatial reconstructxon of the wave pattern defined by Eq. (16) 
(e = 1, v = 1, /3 = 1, tc = 2 = 2, ~ = 0.925, v = 2.82; the time separat ion between two figures is 
2n/10c0, and they are presented in successive order in each column, the left one corresponding 

to the first half period and the right one the second half period). 
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Fig. 4. Codimension-one defect separating two domains of forced wave pattern with a phase 
shift of n in the y direction. 

or in liquid crystal instabilities such as the electrohydrodynamic instability 
of nematics. In the liquid crystal case, however, one has to take into 
account the intrinsic anisotropy of the system. For example, in the case, 
temporal modulations of frequencies close to three times the critical 
frequency should be able to induce 2D wave patterns of triangular 
symmetry but nonperiodic in time. 
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